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A data renaissance is on the horizon, but to unleash its true potential, data
leaders need to prioritize reliability and trust.

Just as SaaS has moved from only powering websites to being trusted with
increasingly critical tasks from banking to real-time navigation, in many
organizations data is moving from solely powering executive dashboards to
creating valuable data applications such as machine learning models and
real-time marketing applications.

However, as data becomes increasingly important to modern companies,
it’s crucial that teams trust their data is accurate and reliable.
Unfortunately, poor data quality and inefficient processes are the cold
realities for most organizations. Consider:

I. A New Era of Data Quality

The average organization suffers
approximately 70 data incidents a year
for every 1,000 tables in their
environment.

Data professionals are spending a
whopping 40% of their time evaluating
or checking data quality.

Nearly 50% of data professionals
estimate their business stakeholders
are impacted by issues the data team
doesn’t catch most of the time, or all
the time. They also estimate poor data
quality impacts 26% of their companies
revenue.

Why is this the case and what can be done to change it? Let’s take a look at
current data quality monitoring best practices and their limitations.



Current data monitoring approaches and their limitations

For the past decade, the first-and-only line of defense against bad data was
testing. 

Similar to how software engineers would use unit tests to identify buggy
code before it was pushed to production, data engineers would leverage
tests–either hardcoded in the pipeline or using an open-source tool like dbt
or Great Expectations–to detect and prevent potential data quality issues
from moving further downstream. 

Data testing is a good solution for specific, well-known problems. But just
like a spoon is a good tool for eating ice cream and a terrible one for digging
a house’s foundation, so too is data testing a poor tool for engineering
reliable data systems at scale.

For example, threshold setting can be tricky. It is easier to create a test
when the column can never have a NULL value than when some percentage
of NULLS are expected some of the time.

“Whether it’s custom SQL rules or dbt tests, you have
to do that upfront configuration. You have to know in
advance what it is you’re going to monitor, and go
through the process of setting it up.” said Edward
Kent, Technical Lead, AutoTrader UK.

“For us, we have hundreds of data models defined and
hundreds of tables built daily. We needed something
that would effectively get this off the ground and
running without us having to put in that effort.”

Read Auto Trader UK's Story

https://resources.montecarlodata.com/case-studies/blog-case-study-autotrader?lx=n4O3Ws&_ga=2.230852767.1021653675.1666614110-1145046724.1652703504&_gac=1.53275354.1665087039.Cj0KCQjw-fmZBhDtARIsAH6H8qh1es9-D3zbdQ468vSXtsLBhR7u6Jnv5RJxFea6c05oVEPbX_ylbfMaAkLrEALw_wcB


“We had a lot of dbt tests. We had a decent number of
other checks that we would run, whether they were manual
or automated, but there was always this lingering feeling in
the back of my mind that some data pipelines were
probably broken somewhere in some way, but I just didn’t
have a test written for it,” said Nick Johnson, VP of Data, IT
& Security, Dr. Squatch.

Read Dr. Squatch's Story

Another challenge is you can’t anticipate all the creative ways data can
break–there are just too many interdependent, moving parts across too
many teams. We call this the unknown unknowns problem. 

To emphasize this point, we know of a data team that built hundreds of data
tests on a single, business-critical pipeline…and still experienced data
incidents with some regularity. Can you imagine trying to scale this process
across all of your production pipelines?

And of course, the other challenge with data testing is the time required for
a task so tedious that execution is typically spotty at best. 

Data engineering leads will kick off their weekly meetings and talk about the
importance of adding unit and end-to-end tests within all production
pipelines until they are blue in the face. Everyone on the Zoom call nods and
tells themselves they will rededicate themselves to this effort.

Some teams create tight enough processes that they successfully create
and maintain hundreds even thousands of tests. Which creates the problem
of…creating and maintaining hundreds even thousands of tests.

Software engineers still use unit tests, but they reached 99.999% uptime
thanks to real-time monitoring and observability. It’s time for data
engineers to utilize these approaches as well. 

https://resources.montecarlodata.com/case-studies/blog-how-dr-squatch?lx=n4O3Ws&_ga=2.230852767.1021653675.1666614110-1145046724.1652703504&_gac=1.53275354.1665087039.Cj0KCQjw-fmZBhDtARIsAH6H8qh1es9-D3zbdQ468vSXtsLBhR7u6Jnv5RJxFea6c05oVEPbX_ylbfMaAkLrEALw_wcB
https://www.montecarlodata.com/blog-the-new-rules-of-data-quality/


Why you can’t out-architect bad-data

Another misguided data quality approach some data teams will take is to
put 100% of their efforts into building systems that don’t break. While a
noble goal, bad data is inevitable. 

Many ETL pipelines are, at their heart, a
communication between two different
teams, often at different companies,” said
Rick Saporta, Head of Data Strategy and
Insights, The Farmer’s Dog.

 “When one team makes a change, it affects
the other. In the best of instances, you
might have strong communication between
the different teams, but all pipelines break
at some point, and it’s hard to anticipate all
the different ways that data can break.”

Read The Farmer's Dog Story

Human error — No data architecture is perfect because these
systems involve people and humans aren’t perfect. Bugs enter
production, wrong numbers get entered, and transformation model
mistakes get made.

Third-party dependencies — Virtually every data ecosystem
consists of numerous third-party data sources whose quality cannot
be controlled. Even the largest, most disciplined third-party data
sources send data late, change how data is delivered, or send bad
data at times.

New initiatives — As one of our colleagues likes to say, “data is like
fashion, it’s never finished – it’s always evolving.” Even in a
hypothetical world where you have finished the last brushstroke on
your architectural masterpiece, there will be new requirements and
use cases from the business that will necessitate change.

Consider these scenarios that are completely out of the data engineers
control:

https://resources.montecarlodata.com/case-studies/blog-case-study-farmers-dog?lx=n4O3Ws


Freshness— Did the data arrive when it should have?

Volume — Are there too many or too few rows?

Schema— Did the way the data is organized change?

That’s not to say data teams shouldn’t invest in best practices like data
contracts, certification, or SLAs. Those things do help reduce data
incidents. 

But data teams do need to approach bad data as inevitably as security
teams approach successful cyber breaches, and invest in layered defense
and mitigation strategies as appropriate. As we saw in the previous section,
it’s also the same approach that software engineers have taken towards
application reliability for years: data monitoring and observability.

What is data pipeline monitoring? What is data observability?

Data pipeline monitoring involves using machine learning to understand the
way your data pipelines typically behave, and then send alerts when
anomalies occur in that behavior. 

This includes:

Some tools within the modern
data stack, like Airflow for
instance, will have the ability to
monitor their portion of the ETL
pipeline.

While helpful, data teams need
to monitor their entire pipeline
end-to-end from ingestion to
landing and through
transformation all the way to
consumption in the BI layer.



Automated data lineage— With a real-time map of all system and
table dependencies down to the BI layer, data teams can understand
the impact of an incident downstream and trace the root cause to
the table furthest upstream.

Anomalous Row Distribution— One way to pinpoint issues with the
data itself is to find “bad rows” that break user-defined business
logic. While you could manually run multiple queries to segment the
data, this can also be automated in a visual format to help accelerate
the resolution process.

Query Change Detection— Did an anomaly arise within a table at the
same time as a query acting on that data was modified? Or perhaps
at the same time a dbt model was updated? These correlated events
are often causal as well.

Data Insights— Data health insights can move from reactive
resolution to proactive prevention by highlighting issues such as
unused tables or deteriorating queries. Dashboards that point to
particularly problematic areas also enable more optimized resource
allocation. 

It is also important that data pipeline monitoring is supplemented with a
process for monitoring the data quality itself. This is because while the
pipeline may be operating fine, the data flowing through it may be garbage.
For example, the data values may be outside the normal historical range or
there could be anomalies present in the NULL rates or percent uniques.

Monitoring the data itself can be done automatically with machine learning
as well as by setting custom rules, for example if you know a monetary
conversion rate can never be negative.

When automated data monitoring is combined with features to accelerate
incident resolution, understand the impact of those incidents, and illustrate
data health over time, it then becomes data observability. This technology
category often includes features such as:

https://www.montecarlodata.com/blog-what-is-data-observability/
https://www.g2.com/categories/data-observability


“How well are the systems performing? If there are tons of
issues, then maybe we aren’t building our system in an
effective way. Or, it could tell us where to optimize our time
and resources. Maybe 6 of our 7 warehouses are running
smoothly, so let’s take a closer look at the one that isn’t,”
said Brandon Beidel, Director of Product Management,
RedVentures.

Read Red Venture's Story

https://www.montecarlodata.com/blog-one-sla-at-a-time-our-data-quality-journey-at-red-digital/?utm_source=blog&utm_medium=twitter&utm_campaign=&utm_term=february


Not only can this lead to strained relationships with internal stakeholders, in
cases where the data is or is part of the product, it can impact customer
satisfaction and the bottom line.

In one sense, the value of data pipeline monitoring and data observability is
near priceless. An organization cannot be data-driven, and a data team
cannot add value, if no one trusts the data. 

II. The Value of Monitoring and
Data Observability

“Data observability has become a necessity, not a luxury,
for us,” said Alex. “As the business has become more and
more data-driven, nothing is worse than allowing
leadership to make a decision based upon data that you
don’t have trust in. That has tremendous costs and
repercussions.”

Read Fox Digital's Story

“Without a [data observability tool], we might have
monitoring coverage on final resulting tables, but that
can hide a lot of issues,” said Adam Woods, CEO,
Choozle. “You might not see something pertaining to a
small fraction of the tens of thousands campaigns in that
table, but the [customer] running that campaign is going
to see it. With [data observability] we are at a level where
we don’t have to compromise.”

Read Choozle's Story

https://resources.montecarlodata.com/case-studies/blog-data-reliability-at-scale-how-fox-digital-architected-its-modern-data-stack?lx=n4O3Ws
https://www.montecarlodata.com/blog-delivering-on-data-quality-how-choozle-reduced-data-downtime-by-88-with-monte-carlo/


Introducing data downtime

That being said, it’s unlikely the chief financial officer is going to accept
“priceless” when you are building your business case. So let’s take a look at
how data teams have measured data quality.

A simple calculation for the estimated number of incidents you have each
year (whether you are currently catching them or not) can be done by
dividing the number of tables you have in your environment by 15. 

You can then multiply this number by your average time-to-detection and
average time-to-resolution. If you aren’t currently capturing these metrics,
don’t worry, you are not alone. Our industry research revealed the industry
average is about 4 hours and 9 hours respectively–feel free to use or adjust
those estimates based on your organization’s data quality maturity. 

Congratulations, you have just calculated your data downtime! This is the
period where data is inaccurate, missing, or otherwise erroneous.

The ROI of reducing data downtime

Now let’s calculate how much data downtime costs your organization. The
first part of the calculation, labor cost, is relatively straightforward.

Since we know data quality professionals spend around 40% of their time
on inefficient data quality practices, we can use this formula:

Total data engineers x 1804 (average working hours in a year) x $62
(average salary) x .4



Expected time-to-value— Like any in-house solution, designing,
building, scaling, and maintaining an internal data quality solution
will take time, money, and headcount. If you have an extensive data
engineering and data science team with a significant amount of
extra time on their hands, then building could make sense—but at
most companies, lack of work for data teams is rarely an issue.
When the data team at a leading insurtech provider investigated
building a data observability solution, they realized it would take 30
percent of their data engineering team to build a comprehensive
anomaly detection algorithm, a solution that would cost upwards of
$450,000/year to build and maintain. They chose to buy instead.

The case for build vs buy

It’s not uncommon for data teams to consider building their own data
quality solutions in-house. Here are a few things to consider in your
calculations.

The operational cost of poor data quality is
a bit harder to quantify. A data incident
can be as harmless as a broken dashboard
no one uses or as painful as reporting
incorrect numbers to Wall Street.

One way to estimate this is to measure the
overall risk. If an organization invests in its
data team to increase overall efficiency
10% (or insert your own value here) then
for each hour of data downtime we can
assume the organization’s productivity
has been reduced 10%. The formula is
then:

Overall data downtime x %reduction in
hourly revenue generated.

https://resources.montecarlodata.com/ebooks/how-much-does-bad-data-cost-you?lx=LPgDLW&_ga=2.159992125.1021653675.1666614110-1145046724.1652703504&_gac=1.58710104.1665087039.Cj0KCQjw-fmZBhDtARIsAH6H8qh1es9-D3zbdQ468vSXtsLBhR7u6Jnv5RJxFea6c05oVEPbX_ylbfMaAkLrEALw_wcB
http://www.montecarlodata.com/what-is-data-observability/


Oppportunity cost— When your data engineers are spending their
time manually building data tests to account for any and all possible
edge cases, those are hours that could have been spent solving
customer problems, improving your product, or driving innovation.
When you consider that even the most robust testing in the world
won’t account for about 80 percent of data issues, it pays to
consider the opportunity cost of what it means to be building and
maintaining these tests instead of working on projects that will
actually move the needle for your business.

Scoping— Before building or buying any data quality solution, you
should understand exactly what you are looking to achieve not just
tomorrow but in the next 6, 12, or even 18 months. You will need to
look into the future and understand:

Who will use the tool?
What data quality problems do you want to solve?
What will be the single source of truth?
What about data discovery or lineage?
What are your data governance requirements?

“With such high-stakes data in Snowflake, it wasn’t an
option to not include data observability—getting that out of
the box with Monte Carlo allowed us to avoid spending the
mental energy on designing something ourselves so that
we could spend that energy on building products that help
our customers,” said Jacob Follis, chief innovation officer,
Collaborative Imaging. “It brought us down the path of
ensuring data quality faster and prevented us from taking
on technical debt.” 

Read Collaborative Imaging's Story

http://www.montecarlodata.com/the-new-rules-of-data-quality/
https://resources.montecarlodata.com/case-studies/how-to-measure-the-i?lx=n4O3Ws


This chapter will cover how to build data pipeline monitors and is meant for
a highly technical reader. The next chapter will cover considerations when
buying data pipeline monitoring and data observability solutions. Feel free
to skip to the section most relevant to your use case.

Note: the details of your implementation will depend on your choice of data
warehouse, data lake, BI tools, preferred languages and frameworks, and so
on. This chapter addresses these problems using lightweight tools like
SQLite and Jupyter in an example data ecosystem to create a data quality
monitor in SQL.

III. How to Build a Data Pipeline
Monitor

This section has been adapted from O’Reilly
Media’s Data Quality Fundamentals co-
authored by Monte Carlo co-founders Barr
Moses, Lior Gavish, and Monte Carlo head of
content Molly Vorwerck. The section below
was contributed by Ryan Kearns.

While we just review how to build one type of
monitor here–in this case data freshness–you
can get examples for how to build schema,
lineage, distribution monitors and more from
the book available for free on our site.

Freshness monitor

Our sample data ecosystem uses mock astronomical data about habitable
exoplanets. For the purpose of this exercise, I generated the dataset with
Python, modeling anomalies off of real incidents I’ve come across in
production environments. This dataset is entirely free to use, and the utils
folder in the repository contains the code that generated the data, if you’re
interested.

https://resources.montecarlodata.com/l/oreilly-data-quality?_ga=2.188836011.1021653675.1666614110-1145046724.1652703504&_gac=1.82637540.1665087039.Cj0KCQjw-fmZBhDtARIsAH6H8qh1es9-D3zbdQ468vSXtsLBhR7u6Jnv5RJxFea6c05oVEPbX_ylbfMaAkLrEALw_wcB
https://resources.montecarlodata.com/l/oreilly-data-quality?_ga=2.188836011.1021653675.1666614110-1145046724.1652703504&_gac=1.82637540.1665087039.Cj0KCQjw-fmZBhDtARIsAH6H8qh1es9-D3zbdQ468vSXtsLBhR7u6Jnv5RJxFea6c05oVEPbX_ylbfMaAkLrEALw_wcB
https://resources.montecarlodata.com/l/oreilly-data-quality?_ga=2.188836011.1021653675.1666614110-1145046724.1652703504&_gac=1.82637540.1665087039.Cj0KCQjw-fmZBhDtARIsAH6H8qh1es9-D3zbdQ468vSXtsLBhR7u6Jnv5RJxFea6c05oVEPbX_ylbfMaAkLrEALw_wcB
https://resources.montecarlodata.com/oreilly-book/chapter-6?lx=-phHX_
https://github.com/monte-carlo-data/data-observability-in-practice/blob/main/EXOPLANETS.db
https://github.com/monte-carlo-data/data-downtime-challenge/tree/master/data/utils


A database entry in EXOPLANETS contains the following info:

0._id: A UUID corresponding to the planet.
1. distance: Distance from Earth, in lightyears.
2. g: Surface gravity as a multiple of g, the gravitational force constant.
3. orbital_period: Length of a single orbital cycle in days.
4. avg_temp: Average surface temperature in degrees Kelvin.
5. date_added: The date our system discovered the planet and added it
automatically to our databases.

Note that one or more of distance, g, orbital_period, and avg_temp may be
NULL for a given planet as a result of missing or erroneous data.

I’m using SQLite 3.32.3, which should make the database accessible from
either the command prompt or SQL files with minimal setup. The concepts
extend to really any query language, and these implementations can be
extended to MySQL, Snowflake, and other database environments with
minimal changes.

https://github.com/monte-carlo-data/data-observability-in-practice/tree/main/queries


Note that this exercise is retroactive — we’re looking at historical data. In a
production data environment, data observability is real time and applied at
each stage of the data life cycle, and thus will involve a slightly different
implementation than what is done here.

The first pillar of data observability we monitor for is freshness, which can
give us a strong indicator of when critical data assets were last updated. If a
report that is regularly updated on the hour suddenly looks very stale, this
type of anomaly should give us a strong indication that something is off.
First, note the DATE_ADDED column. SQL doesn’t store metadata on when
individual records are added. So, to visualize freshness in this retroactive
setting, we need to track that information ourselves.

Grouping by the DATE_ADDED column
can give us insight into how
EXOPLANETS updates daily. For
example, we can query for the number of
new IDs added per day:

You can run this yourself with $ sqlite3
EXOPLANETS.db <
queries/freshness/rows-added.sql in the
repository. We get the following data
back:

https://github.com/monte-carlo-data/data-observability-in-practice


Based on this graphical representation of our dataset, it looks like
EXOPLANETS consistently updates with around 100 new entries each day,
though there are gaps where no data comes in for multiple days.

Recall that with freshness, we want to ask the question “is my data up to
date?” — thus, knowing about those gaps in table updates is essential to
understanding the reliability of our data.

This query operationalizes
freshness by introducing a
metric for
DAYS_SINCE_LAST_UPDATE.
(Note: since this tutorial uses
SQLite3, the SQL syntax for
calculating time differences
will be different in MySQL,
Snowflake, and other
environments).



The resulting table says “on date X, the most recent data in EXOPLANETS
was Ydays old.” This is information not explicitly available from the
DATE_ADDED column in the table — but applying data observability gives
us the tools to uncover it.

Now, we have the data we need to detect freshness anomalies. All that’s left
to do is to set a threshold parameter for Y — how many days old is too
many? A parameter turns a query into a detector, since it decides what
counts as anomalous (read: worth alerting) and what doesn’t. 



Freshness detections!



The data returned to us represents dates where freshness incidents
occurred.

On 2020–05–14, the most recent data in the table was 8 days old! Such an
outage may represent a breakage in our data pipeline, and would be good to
know about if we’re using this data for anything worthwhile (and if we’re
using this in a production environment, chances are, we are).

Here, 1 is a model parameter — there’s nothing “correct” about this
number, though changing it will impact what dates we consider to be
incidents. The smaller the number, the more genuine anomalies we’ll catch
(high recall), but chances are, several of these “anomalies” will not reflect
real outages. The larger the number, the greater the likelihood all anomalies
we catch will reflect true anomalies (high precision), but it’s possible we
may miss some.

For the purpose of this example, we could change 1 to 7 and thus only catch
the two worst outages on 2020–02–08 and 2020–05–14. Any choice here
will reflect the particular use case and objectives, and is an important
balance to strike that comes up again and again when applying data
observability at scale to production environments.

Below, we leverage the same freshness detector, but with
DAYS_SINCE_LAST_UPDATE > 3; serving as the threshold. Two of the
smaller outages now go undetected.

Note in particular the last line of the query: DAYS_SINCE_LAST_UPDATE > 1;.

https://en.wikipedia.org/wiki/Parameter
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall


Now we visualize the same freshness detector, but with
DAYS_SINCE_LAST_UPDATE > 7; now serving as the threshold. All but the
two largest outages now go undetected.

Note the two undetected outages — these must be fewer than 3-day gaps.

Just like planets, optimal model parameters sit in a “Goldilocks Zone” or
“sweet spot” between values considered too low and too high. 

https://www.nasa.gov/vision/earth/livingthings/microbes_goldilocks.html


What’s next?

This brief tutorial intends to show that “data observability” is not as
mystical as the name suggests, and with a holistic approach to
understanding your data health, you can ensure high data trust and
reliability at every stage of your pipeline.

In fact, the core principles of data observability are achievable using plain
SQL “detectors,” provided some key information like record timestamps
and historical table metadata are kept. It’s also worth noting that key ML-
powered parameter tuning is mandatory for end-to-end data observability
systems that grow with your production environment.

However, keep in mind our earlier section on build vs. buy and the costs
involved with creating and maintaining your own data pipeline monitoring.
At the very least, our recommendation is to demo some commercial
solutions prior to engaging on your build.



Data observability platforms are the newest
layer in the modern data stack, helping teams
monitor the health of critical data assets and
pipelines while building organizational trust in
data at scale.

Because it’s a nascent category, many
questions arise on what the must-have features
are or how different solutions should be
evaluated.

After working with hundreds of organizations
during the pre and post purchase process, we
have put together four key areas that drive
value and user satisfaction.

IV. How to Get Started With Data
Pipeline Monitoring

Time-to-value

Data teams should get immediate value out of data observability tools. Full
stop.

They should be easy and quick to deploy, and fast to start detecting
anomalies or other issues with your data, instead of a weeks-long process in
manually configuring monitors. Even the most efficient data engineering
team doesn't have time for that.

At a fundamental level, a data observability platform should monitor your
data’s health and alert your team when pipelines break or jobs don’t run well
before your downstream data consumers notice the issue in their
dashboards or queries.

Knowing what issues to monitor for can be overwhelming which is where a
ML driven approach is critical. Instead of relying on manual tests to check
for data quality issues, your data observability platform should intelligently
surface when changes are noticed.

https://resources.montecarlodata.com/ebooks/DO-Evaluation?lx=LPgDLW&_ga=2.159992125.1021653675.1666614110-1145046724.1652703504&_gac=1.58710104.1665087039.Cj0KCQjw-fmZBhDtARIsAH6H8qh1es9-D3zbdQ468vSXtsLBhR7u6Jnv5RJxFea6c05oVEPbX_ylbfMaAkLrEALw_wcB


“What was really exciting to me when we first got set up
was just how we flipped this switch, and suddenly we had
all kinds of insights into what was happening in our
warehouse,” said Dylan Hughes, senior software engineer,
Prefect.

Read Prefect's Story

End-to-end pipeline visibility

Your data observability platform should give you unprecedented visibility
into your data ecosystem so you can proactively identify, root cause, and
resolve data issues from source to orchestration and transformation tooling,
to BI layer.
 
Your most critical asset? Automated field-level lineage.
 
Limited to no visibility into data pipelines upstream of a data assets makes
troubleshooting manual and time consuming.
 
With data observability, data teams should be able to see the entire data
lineage upstream and across warehouse projects of a BI report or
materialized tables by simply searching in a centralized UI.
 
Lineage provides information to end users on dashboard staleness and
other incidents due to downstream issues, and offers proactive
troubleshooting to help address issues in a timely manner.
 
A strong data observability solution will integrate with solutions at the
ingestion, orchestration, transformation, repository, and BI layers.

A tool that provides fast time to value will quickly address any questions regarding
data freshness, volume, distribution, and schema changes over time, and
provided domain data quality dashboards for technical and business users alike.
The solution will also reduce time to monitor assets over time and provide a single
pane for data governance needs.

https://resources.montecarlodata.com/case-studies/blog-big-data-qualit-1?lx=n4O3Ws


“I told my boss, ‘I wish there were someplace that I could
take a table and see everything it connects to,” said Daniel
Rimon, head of data engineering at Resident. “I could
know, it affects this and this, but not here, and here’s the
dashboard it goes to ultimately. I need a very big map.
There has to be some kind of thing like this!”

Read Resident's Story

Deep, broad, and custom coverage

Data observability solutions should proactively (and automatically) alert
you to freshness and volume anomalies, as well as schema changes that are
then logged in a central catalog.

Your platform should use metadata such as query logs and schema change
logs to automatically alert when changes break your data pipelines. By
using this metadata instead of the data itself, your platform provides an
additional layer of security and reduces costs by limiting data monitoring on
field values requiring direct queries to only your most critical assets (more
on that later).

This is table stakes for any data observability platform. Just as software
engineers rely on ML-powered monitoring to alert them to any outages or
downtime, data teams should be able to rely on monitoring to automatically
notify them of any anomalies in data health the minute a table is added to
their environment rather than needing to set thresholds, opt it into
monitoring, or waiting for an internal consumer or customer to notice
something’s gone wrong.

However while automation is critical for freshness, volume, and schema-
related incidents, your organization knows your data assets best. As a
result, your data observability platform should include the flexibility for data
engineers, data analysts, and data scientists to set their own rules to
monitor data according to business needs or as new pipelines and projects
are introduced.

User-defined, machine learning-powered monitors are best deployed using
the most well-defined, understood logic to catch anomalies that are
frequent or severe. It is typically expressed through a SQL statement.

https://resources.montecarlodata.com/case-studies/blog-case-study-resident?lx=n4O3Ws


You miss or are delayed in detecting and resolving anomalies more
evident upstream.

Alerting on a key table, oftentimes dozens of processing steps
removed from the root cause, will involve the wrong person and give
them little context on the source of the issue or how to solve it.

Without understanding the dependencies in the system, your team
will waste time trying to determine where to focus their monitoring
attention. Maintaining that as the environment and data
consumption patterns change can also be tedious and error prone. 

A strong data observability solution will proactively alert you to field-level
anomalies, such as an increase in the number of dimensions, a change in
the % of unique values, or whether a value is within historical range, through
Field Health and Dimension tracking monitors in a timely manner, with no-
code configuration.

Beware—  ensure your data monitoring isn’t overly narrow! When you
only deploy user-defined and machine learning monitors on your most
important tables:

All we really had to do was sign up, add the security
implementation to give Monte Carlo the access that it
needed, and we were able to start getting alerted on issues.
Monte Carlo gave us that right out of the box.”

Read Clearcover's Story

System root causes: System or operational issues are found when
there is an error introduced by the system or tools that customers
apply to the data during the extraction, loading and transformation
processes.

Accelerated root cause analysis across all three levels

Data observability solutions should accelerate resolution across the three
levels where anomalies are introduced:

https://resources.montecarlodata.com/case-studies/blog-clearcover-case-study?lx=n4O3Ws&_ga=2.130260998.828768678.1666820192-1145046724.1652703504


An example of this could be an Airflow check that took too long to
run causing a data freshness anomaly. Another example could be a
job that is relying on accessing a particular schema in Snowflake,
but it doesn’t have the right permissions to access that schema.
This is why it is critical for your data observability solution to
integrate with multiple solutions across the modern data stack and
surface error logs to consolidate this troubleshooting behind a
single pane of glass.

Code: The second type of data incident root causes are code related.
An example would be is there anything wrong with your SQL or
engineering code? An improper JOIN statement resulting in
unwanted or unfiltered rows perhaps? Or is it a dbt model that
accidentally added a very restrictive WHERE clause that resulted in
a reducing number of rows of output data triggering a volume
anomaly?

If you can find a query or dbt model was modified around the
approximate time an anomaly was introduced, it’s a promising sign
you’ve found your root cause. This process can be expedited with
data monitoring and log analysis across your stack.

Data: System and code issues are also very typical in software
engineering, but in the wonderful world of data engineering, there
can also be issues that arise in the data itself making it a more
dynamic variable.

For example, it could be a consumer application where the customer
input is just wacky. Let’s say you are an online pet retailer and
someone enters their dog weighs 500 pounds instead of just 50. A
strong data observability solution needs to be able to monitor for
these types of field or metric anomalies and have features like
anomalous row distribution that can help pinpoint where bad data is
entering the system.

“With Monte Carlo’s broad coverage and automated
lineage...our team can identify, understand downstream
impacts, prioritize, and resolve data issues at a much faster
rate,” said Ashley VanName, general manager of data
engineering, JetBlue.

Read Jet Blue's Story

https://venturebeat.com/data-infrastructure/how-jetblues-integrated-use-of-snowflake-and-fivetran-is-a-model-for-the-modern-data-stack/


Let’s say at this point you are either in the final stages of building or buying
your data monitoring solution. It’s time to start thinking about how you are
going to leverage your new capabilities to scale data quality across your
organization.

We’ve found there are five levels of operational maturity that are best tackled
in sequential order. Let’s take a look at each.

Level zero

Level zero, if you haven’t already taken this step when building your
business case, is to align on the overall organizational goals and KPIs of this
initiative. How are you going to measure the success over time or show the
value it has provided to the business? 

There are a number of general data quality metrics–some like data
downtime or time spent fixing pipelines that we have introduced previously
in this ebook–that can be used for this purpose. However, the best metric is
one that measures what your boss cares about and is aligned with business
goals in the long-term. This way you retain executive buy-in and support
for your initiative.

V. Operationalizing Data Pipeline
Monitoring With Data Observability

https://www.montecarlodata.com/blog-how-to-set-kpis-for-your-data-team/


At this stage you should also set up regular check-ins with the vendor or
internal team responsible for the roadmap and development of your
monitoring solution.

Level 1

The first level of operational maturity is to make sure you have basic
coverage (freshness, volume, schema) in place across your data
environment. For the vast majority of organizations, you will want to roll this
out across every data product, domain, and department rather than pilot
and scale.  

This will accelerate your time to value and help you establish critical touch
points with different teams if you haven’t done so already. Another reason
for a wide roll out is that, even with the most decentralized organizations,
data is interdependent. If you install fire depressant systems in the living
room while you have a fire in the kitchen, it doesn't do you much good. Also,
wide-scale data monitoring and/or data observability will give you a
complete picture of your data environment and the overall health. Having
the 30,000 foot view is helpful as you enter the second level of operational
maturity.

“We started building these relationships where I know
who’s the team driving the data set,” said Lior Solomon,
former VP of engineering and data at Vimeo.. “I can set up
these Slack channels where the alerts go and make sure
the stakeholders are also on that channel and the
publishers are on that channel and we have a whole
kumbaya to understand if a problem should be
investigated.”

Read Vimeo's Story

Level 2

At this stage in the game, we want to start optimizing our incident triage
and resolution response. This involves setting up clear lines of ownership.
There should be team owners for data quality as well as overall data asset
owners at the data product and even data pipeline level. Breaking your
environment into domains, if you haven’t already, can help create additional
accountability and transparency for the overall data health levels
maintained by different groups.

https://resources.montecarlodata.com/case-studies/blog-vimeo-case-study?lx=n4O3Ws


Having clear ownership also enables fine tuning your alert settings, making
sure they are sent to the right communication channels of the responsible
team at the right level of escalation.

Level 3

While level two is about fine tuning your ownership and alerting, this level of
operational maturity is focused on layering more sophisticated, custom
alerts. These can be centered around specific data SLAs–for example if
data needs to be fresh at 8:00 am every weekday for a meticulous
executive. 

Custom monitors and SLAs can also be built around different data reliability
tiers to help set expectations to certify “gold” datasets with high reliability,
to an ad-hoc data pull for a limited use case that may not be supported as
robustly.

How does data observability help with data certification?



Level 4

At this point, we have driven significant value to the business and
noticeably improved data quality at our organization. The first three levels
have helped dramatically reduce our time-to-detection and time-to-
resolution, but there is a third variable in the data downtime formula:
number of data incidents.

One of the main goals of level four is to start operationalizing your
preventive maintenance. In other words, preventing data incidents before a
pipeline breaks. That can be done by focusing on data health insights like
unused tables or deteriorating queries. Analyzing and reporting the data
quality levels or SLA adherence across domains can also help data leaders
determine where to allocate resources. 

“Monte Carlo’s lineage highlights upstream and
downstream dependencies in our data ecosystem,
including Salesforce, to give us a better understanding of
our data health,” said Yoav Kamin, then the director of
business performance at Yotpo. “Instead of being reactive
and fixing the dashboard after it breaks, Monte Carlo
provides the visibility that we need to be proactive.”

Read Yotpo's Story

Make sure you are monitoring both the data pipeline and the data
flowing through it.

Level 5

The final level is focused on programmatic data quality management. The
most sophisticated organizations manage a large portion of their data
monitoring through code (monitors as code) as part of the CI/CD process.
They also use circuit breakers, which stop pipelines from landing bad data
into the warehouse (or any data once they are tripped so proceed with
caution!).

Final thoughts

We covered a lot of ground. Some of the key takeaways include:

https://resources.montecarlodata.com/case-studies/blog-case-study-yotpo?lx=n4O3Ws&_ga=2.130260998.828768678.1666820192-1145046724.1652703504


You can build a business case for data monitoring by understanding
the amount of time your team spends fixing pipelines and the impact
it has on the business.

You can build or buy data monitoring–the choice is yours–but if you
decide to buy a solution be sure to evaluate its end-to-end visibility,
monitoring scope, and incident resolution capabilities.

Operationalize data monitoring by starting with broad coverage and
mature your alerting, ownership, preventive maintenance, and
programmatic operations over time.

Perhaps the most important takeaway from this guide is that data pipelines
will break and data will turn bad. Whatever your next step entails, it’s
important to take it sooner rather than later. You won’t be sorry.



Data Downtime Blog: Get fresh tips, how-tos, and expert advice on
all things data.

O’Reilly Data Quality Framework: The first several chapters of this
practitioner's guide to building more trustworthy pipelines are free
to access.

Data Observability Product Tour: Check out this video tour showing
just how a data observability platform works. 

Request A Demo: Talk to our team to get a more accurate
assessment of your data downtime, its costs, and what level of value
you can expect from Monte Carlo.

Don’t let this be the ending point of your data quality journey! Check out
more helpful resources including:

VI. Additional Resources

https://www.montecarlodata.com/blog/
https://resources.montecarlodata.com/l/oreilly-data-quality
https://resources.montecarlodata.com/product-tour?_ga=2.250351750.1691571040.1647260903-403060751.1645208752
https://www.montecarlodata.com/request-a-demo/

